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1. General Properties of Splitting Numbers
(1) Stricter upper bound
• Theorem 2. For every tile 𝑻( 𝑻 > 𝟏),

𝝈(𝑻) ≤ |𝑻|
Ex) 𝜎({0, 2, 3, 7}) ≤ 4, 𝜎({0, 4, 5, 6, 7, 9}) ≤ 6
• Corollary 1. For every 3-element tile 𝑻 = {𝟎, 𝒌, 𝒏}, 

𝟐 ≤ 𝝈(𝑻) ≤ 𝟑
Corollary 1 follows from Theorem 1 and 2.
(2) Splitting number of dilated/translated tiles
• Theorem 3. For every tile 𝑻 and for all 𝟎 ≠ 𝒌 ∈ ℤ,

𝝈 𝑻 = 𝝈(𝒌𝑻)
• Ex) 𝜎 0, 1, 3 = 𝜎 0, 2, 3 (Reflection)

<Figure 3>
• Theorem 4. For every tile 𝑻 and for all 𝒌 ∈ ℤ,

𝝈 𝑻 = 𝝈(𝑻 + 𝒌 )
By Theorem 4, we may assume all tiles begin with 0.  Further, by 
reflection we may assume all tiles have non-negative elements.

1. Tiles
• A Tile is a subset of the integers.
• Each element of a tile is called a cell.
• Maximal consecutive cells are called blocks.
• The size of T is the number of elements in T.
• The length of T is denoted by l(𝑇), and it is

𝑙 𝑇 = 𝑚𝑎𝑥 𝑇 − 𝑚𝑖𝑛 𝑇 + 1
• Ex) For a tile 𝑇 = {0, 1, 3, 4}, see figure 1.

<Figure 1>Anatomy of a tile, cells, and blocks.

2. Coverings
• A shift is an integer (denoted by 𝑠).
• A translation is a tile shifted by a shift 𝑠 (denoted by 𝑇 + {𝑠}).
• A multiset 𝑆 is a set of shifts.
• The translate set 𝑇𝑆 is a collection of translations.

𝑇𝑆 ≔ {𝑇 + 𝑠 : 𝑠 ∈ 𝑆}
• A set of tiles which contain 𝑥 is

𝑇𝑆 𝑥 ≔ {𝑇 ∈ 𝑇𝑆: 𝑥 ∈ 𝑇}
• 𝑇𝑆 covers ℤ if the union of every tile 𝑇 in 𝑇𝑆 is ℤ.

ራ
𝑇∈𝑇𝑆

𝑇 = ℤ

• 𝑇𝑆 is a 𝑘-covering if
|𝑇𝑆(𝑥)| ≥ 𝑘 for all 𝑥 ∈ ℤ

• 𝑇𝑆 is an exact 𝑘-covering if
𝑇𝑆 𝑥 = 𝑘 for all 𝑥 ∈ ℤ

<Figure 5>Example for subcase (1). A covering for 𝑇 = {0, 2, 5}.
(2) If 𝒌 is odd and 𝒏 is even
Let 𝑆 = −∞, −𝑛 − 1 ∪ 𝑛 + 1, ∞ ∪ 𝑘 − 𝑛, 0 ∪ {𝑛 − 𝑘}, 𝜒𝑆 ,
where

𝜒𝑆 𝑥 = ቐ
∞ (𝑥 ≤ −𝑛 − 1, 𝑥 ≥ 𝑛 + 1)
1 (𝑥 = 𝑘 − 𝑛, −𝑘, 0, 𝑛 − 𝑘)
2(−𝑘 + 1 ≤ 𝑥 ≤ −1, 𝑘 − 𝑛 + 1 ≤ 𝑥 ≤ −𝑘 − 1)

∀𝑥 ∈ ℤ\ 0, 𝑛 , 𝑇𝑆 𝑥 = ∞ by construction.
In the same idea as (1), ∀𝑥 ∈ 0, 𝑛 , 𝑇𝑆 𝑥 = 2.
Suppose 𝑇𝑆 is splittable. Then sets 𝐴 and 𝐵 exists such that every 
integer is covered by 𝑇𝐴 and 𝑇𝐵. Consider the three integers 

0, 𝑛 − 𝑘, 𝑛. 
Each are covered exactly twice, by three translations as follows 

𝑇 + −𝑘 , 𝑇 + 0 , 𝑇 + 𝑛 − 𝑘 .
By the pigeonhole principle, similar to (1), WLOG, 𝑇𝐴 cannot 
cover all three integers among those three, a contradiction. This 
implies the covering 𝑇𝑆 is not splittable.

<Figure 6>Example for subcase (2). A covering for 𝑇 = {0, 3, 8}.

Our main result is a characterization of the splitting number of 3-
element tiles. That is, the splitting number of a 3-element tile is
three if and only if it is not an arithmetic progression. The proof of
our main result followed from our general construction of an
unsplittable 2-covering for non-arithmetic progression tiles and our
improved upper bound on the splitting number. We aim to extend
these results to larger sized tiles. To this end, adapting our general
construction to larger tiles and determining the tightness of our
bounds is imperative. The collaboration of our group attributed to
the success of our project. Along with our findings we have also
found open questions and conjectures which engender further work
in this area.

Introduction

Theoretical Background

A covering • 𝑇𝑆 is splittable if 𝑆 can be partitioned into two 
multisets 𝐴 and 𝐵 such that 𝑇𝐴 and 𝑇𝐵 are coverings:
1) 𝑇𝑆, 𝑇𝐴, 𝑇𝐵 are coverings
2) 𝑆 ⊇ 𝐴 ∪ 𝐵
3) 𝜒𝑆(𝑥) = 𝜒𝐴(𝑥) + 𝜒𝐵(𝑥) for all 𝑥 ∈ ℤ
The • splitting number of a tile is the least integer 𝑘 such that 
every 𝑘-covering is splittable (denoted by 𝜎(𝑘)).

3. Computing Splitting Numbers
Theorem • 1. Finite tiles have a splitting number of at least 2.

𝝈• 𝑻 ≥ 𝒌 if there exists an unsplittable 𝑘 − 1 covering.
𝝈• 𝑻 ≤ 𝒌 if every 𝑘-coverings is splittable.
Ex) Show • 𝜎 0, 1, 3 ≥ 3.

Let 𝑆 ≔ 0 6 ∪ [1]6∪ [2]6∪ [3]6∪ [4]6.
See figure 2. It is an unsplittable 2-covering.

<Figure 2>Proof on unsplittability of 𝑇𝑆. There are 5 translations 
which are completely in [0, 7]. By the pigeonhole principle, the set 
A must have at least 3 of those tiles. This directly implies that B 
must have at most 2 of those tiles. Hence 𝑇𝐵 does not cover 0,7 . 
So 𝑇𝑆 is not splittable.
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Results

2. Splitting Numbers of Elementary Tiles
(1) Splitting number of 1-block tile

Theorem • 5. Every one block tile has a splitting number of 2.

<Figure 4> One example of splittable 2-covering of 𝑇 = {0, 1, 2}
(2) Splitting number of an arithmetic progression

Theorem • 6. Every tile which is an arithmetic progression 
has a splitting number of 2.

Theorem 6 follows from Theorem 3 and Theorem 5 since every 
arithmetic progression is a dilation of a 1-block tile.
(3) Splitting number of 2-element tiles

Theorem • 7. Every 2-element tile has a splitting number of 2.
Theorem 7 follows from Theorem 3 since every 2-element tile is a 
dilation of 𝑇0 = {0, 1}, where 𝜎 𝑇0 = 2 (c.f. Theorem 5).

3. Splitting Numbers of 3-element Tiles
Theorem • 8. A 3-element tile has a splitting number of 2 if 
and only if the tile is an arithmetic progression.

Proof: We already know that every arithmetic progression has a 
splitting number of 2 (c.f. Theorem 6). It remains to show that 
every 3-element tile which is not an arithmetic progression has a 
splitting number of 3, in other words, there exists an unsplittable
2-covering of such a tile. We can write every 3-element tile 𝑇 as 
follows:

𝑇 = 0, 𝑘, 𝑛 2𝑘 < 𝑛 .
Consider the two cases where 𝑛 is odd and even.  By dilation we 
may further assume that k and n are relatively prime.
(1) If 𝒏 is odd
Let 𝑆 = −∞, −𝑛 − 1 ∪ −𝑘, 𝑛 − 𝑘 − 1 ∪ 𝑛, ∞ , 𝜒𝑆 ,

𝜒𝑆(𝑥) = ቊ∞ 𝑥 ≤ −𝑛 − 1, 𝑥 ≥ 𝑛
1 (0 ≤ 𝑥 ≤ 𝑛 − 𝑘 − 1, −𝑘 ≤ 𝑥 ≤ −1)

By construction, for all 𝑥 ∈ 𝐼 = −∞, −𝑛 − 1 ∪ [𝑛, ∞),
|𝑇𝑆 𝑥 | = ∞

① If 0 ≤ 𝑥 ≤ 𝑘 − 1, 𝑇𝑆 = {𝑇 + 𝑥 , 𝑇 + {𝑥 − 𝑘}}
② If 𝑘 ≤ 𝑥 ≤ 𝑛 − 𝑘 − 1, 𝑇𝑆 𝑥 = {𝑇 + 𝑥 , 𝑇 + {𝑥 − 𝑘}}
③ If 𝑛 − 𝑘 ≤ 𝑥 ≤ 𝑛 − 1, 𝑇𝑆 𝑥 = {𝑇 + 𝑥 − 𝑘 , 𝑇 + {𝑥 − 𝑛}}

∴ 𝑇𝑆 𝑥 = 2
So every integer in [0, n-1] is covered exactly twice.
Suppose 𝑇𝑆 is splittable. Then sets 𝐴 and 𝐵 exist such that every 
integer is covered by 𝑇𝐴 and 𝑇𝐵. Consider 𝐴0 and 𝐵0 where

𝐴0 = 𝐴 ∩ [−𝑘, 𝑛 − 1], 𝐵0 = 𝐵 ∩ −𝑘, 𝑛 − 1 .
Note  𝐴0 + 𝐵0 = 𝑛 by construction. By the pigeonhole 
principle, without loss of generality, 

|𝐵0| ≥ 𝑛+1
2

. |𝐴0| = 𝑛 − |𝐵0| ≤ 𝑛−1
2

. 

Hence there are at most 𝑛−1
2

tiles in 𝑇𝐴0, and there are two cells for 
each tile in [0, n-1], so the total number of cells in [0, n-1] that 𝑇𝐴0
covers is at most 𝑛 − 1.
However there are 𝑛 integers that have to be covered in the interval 
[0, n-1]. This is a contradiction, which implies the given covering 
is an unsplittable 2-covering.
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János Pach posed a famous question concerning the splitting
number of disks in the plane. In short, the question asked how
many times each point in the plane needed to be covered by a unit
disk to ensure that there exists a two-coloring of the disks such that
each point is beneath a disk of both colors. It was originally proven
(although unwritten) by Pach, but was later disproved! This
question lead to research into similar problems for convex shapes.
However, these results do not extend naturally to the 1-dimensional
case of the line.
We explore results similar to the disk-covering problem by
discretizing the real line into integers. Instead of considering unit
circles we consider integer tiles. We provide upper and lower
bounds on the splitting number of a finite tile, and discuss the
relationship between the splitting number of a tile and the splitting
number of a dilation/translation of that tile. Our main result is a
characterization of splitting numbers for tiles of size at most three.


