
The Splitting Number of an Integer Tile

Gregory J. Clark, Joshua Cooper, Jacob Folks,
Seungmok Lee, Sydney Miyasaki, Caleb Simmons, Corey Stewart

Summer 2016

Introduction: I advised an REU style summer research program for undergraduate and
high school students. This work was funded by the University of South Carolina Summer Pro-
gram for Research Interns (SPRI) and Support for Minority Advancement in Research Training
(SMART) program through the office of the Vice President for research.

A collection of unit disks is a k-covering of the plane if every point is contained in at least k
disks. János Pach asked if there exists a least k such that every k-covering of the plane by unit
disks has the property that the disks can be colored red and blue such that each color class
covers the plane? Pach’s question was answered in the negative. We consider the following
discretization of Pach’s problem.

Problem 1. For a tile T ⊆ Z does there exist a least integer k such that every k-covering of
the integers by translates of T has the property that the translates can be colored red and blue
such that each color class covers the integers?

Let T ⊆ Z be an integer tile and let X ⊆ Z be a multiset of translates. A multiset of tiles
T = T + X is a k-cover of Z if each integer is contained in at least k elements of T . If T
is a 1-cover for Z we say that T is a cover of Z, or equivalently that T covers Z. We say T
is splittable if T has the property that it can be partitioned into two multisets both of which
are themselves coverings of the integers. For a given tile T we may ask whether there is a k
so that every k-covering of Z with translates of T is splittable. If so, we denote the least such
k by σ(T ) and refer to it as the splitting number of T . If no such k exists, we say that T is
unsplittable. We restate Problem 2 in the following way.

Problem 2. For a given tile T , what is σ(T )?

We were able to answer Problem 2 in the affirmative for finite tiles. We first showed that
the splitting number of a tile is at most the size of the tile, in particular,

2 ≤ σ(T ) ≤ |T |.

We then considered the case when |T | = 3 as our cardinality bound gives σ(T ) ∈ {2, 3}. Using
elementary results from additive combinatorics we proved the following characterization for the
splitting number of three-element tiles.

Theorem 1. Let T be a tile where |T | = 3. We have σ(T ) = 2 if and only if T is an arithmetic
progression. Otherwise, σ(T ) = 3.

We further considered tiles which are derived from the incidence matrix of a hypergraph.
Here the rows/columns of the incidence matrix are indexed by vertices/edges, respectively. We
can view the incidence matrix of a hypergraph H as a snapshot of an |E(H)|-covering of an
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interval of length |V (H)| by letting non-zero entries denote a cell from a translate and vice
versa. As an example, consider the incidence matrix of the Fano plane which we use to induce
a 3-covering of an interval of length 7,

1 1 0 1 0 0 0
1 0 1 0 0 1 0
1 0 0 0 1 0 1
0 1 1 0 1 0 0
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 0 1 1 1 0


→



� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �


where � denotes a non-empty cell. In this way, we can relate the splitting of a k-covering to
the coloring of a k-uniform hypergraph. We have shown that a covering is splittable if and
only if the hypergraph induced by the covering over a finite interval has property B (i.e., is
bipartite) for every finite interval of the integers. This is particularly useful as we can apply
the probabilistic method to show

σ(T ) ≤ log2(|T − T |) + 1 + log2(e)

so that σ(T ) = O(log(|T |)).
Notice that our probabilistic bound of σ(T ) is stronger than the cardinality bound in general.

In particular, σ(T ) depends on |T −T |. Recall Freiman’s Theorem which says that if |T −T | ≤
c|T | then T is contained in a proper d-dimensional generalized arithmetic progression (or GAPs
for short) P of size at most k|T | where d and k depend only on c. Our characterization of three-
element tiles demonstrates the relationship between a tile having a low splitting number and it
being a (generalized) arithmetic progression. Furthermore, we can show that there exist tiles
of arbitrarily large splitting number by appealing to a result of Radahakrishnan and Srinivasan
wherein they showed that least number of edges of a k-uniform hypergraph which does not
have property B is Ω(2k

√
k/ log k).

Future Work: There are numerous avenues for undergraduate research related to this
project. One direction is to generalize the definition of splitting to r-splitting. That is, a k-
covering is r-splittable if the covering can be partitioned into r multisets where each partition
covers the integers. Furthermore, denote the r-splitting number of a tile T by σr(T ). In this
way, a splitting (in the aforementioned sense) is a 2-splitting and σ(T ) = σ2(T ). It is natural
to suspect that there is a relationship between k-coverings which are r-splittable and k-uniform
hypergraphs which are r-colorable. Note that σr(T ) is non-decreasing in r, but it is likely that
a stronger statement exists (for certain families of tiles, at least).

We also considered the computability of σ(T ). By our previous bounds we have that T can
take on only finitely many values. It is natural to ask how difficult it is to determine σ(T ) for
a given T . Note that in order to determine σ(T ) one would have to show that every σ(T )-
covering is splittable and furthermore provide a (σ(T )− 1)-covering which is not splittable. In
terms of an algorithmic approach, the difficulty is in checking “every” σ(T )-covering. We first
want to know if σ(T ) can be computed in a finite amount of time. The next question would be
how quickly can this computation be performed in general? We considered the question briefly
during our summer program and noted that this question could be answered by appealing to
local properties of a covering. In particular, for a given k-covering of the integers by translates
of a tile T the only translates which can cover a particular integer x must begin in the range
[x− |T |, x].

We have provided two upper-bounds for σ(T ). Given that the stronger bound is probabilis-
tic, it is likely that the explicit bound given is not sharp in general. It would be interesting
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to know if a stronger explicit bound exists (even if that bound was identical asymptotically).
Related to this question is the notion of the spectrum of n-element tiles,

Σn = {σ(T ) : |T | = n}.

In particular, do there exist gaps (pun intended) in Σn or are all values between 2 and the
maximum value achievable? A preliminary question to this would be to prove that for all n ≥ 2
there exists a tile Tn such that σ(Tn) = n which also relates to the aforementioned question
about computability.

Another line of research we considered was the splitting number of infinite tiles. Preliminary
results suggest that that the results for finite tiles do not extend naturally to infinite tiles. As
an example, σ(N) = 1 so that the lower bound for the splitting number of finite tiles no longer
holds. There were two natural questions we considered in this direction. The first question
is an analogue of the constructability question: given n ≥ 2 does there exist an infinite tile
Tn such that σ(Tn) = n? We further have an unlimited number of interesting questions in
determining the splitting number of interesting integer sequences (e.g., the primes, Fibonacci
numbers, powers of two, etc.).
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