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Research Statement

My research is in discrete mathematics; specifically, spectral hypergraph theory,
computational algebra, crossing numbers, and network modeling. A central theme
of my dissertation work is exploring the characteristic polynomial of a hypergraph which is
connected to numerous fields of mathematics because this polynomial is the resultant of a
system of multilinear homogeneous equations. The resultant, which is a generalization of the
determinant, is central to algebraic geometry, commutative algebra, and numerical multilinear
algebra among other areas. My dissertation gives a generalization of the Harary-Sachs Theorem
by providing a combinatorial description of the coefficients of characteristic polynomial of a
hypergraph. This result is valuable because we can compute the leading coefficients of this
particular polynomial without needing to compute all the coefficients, which is NP-hard to
compute in general. Furthermore, I have provided a numerically stable algorithm which can
compute the characteristic polynomial of a hypergraph given its set spectrum and leading
coefficients. This allows for the computation of the characteristic polynomial of a hypergraph
when traditional tools from commutative algebra (i.e., the resultant) have been insufficient.
In addition to my dissertation work I have also collaborated on the study of crossing number
problems and have applied my research in hypergraphs to the study of online black markets.

1 Spectral Hypergraph Theory

Given a graph G we would like to understand its structure. One can define a certain matrix
of a graph (e.g., adjacency, incidence, Laplacian, etc.) and connect the multiset of eigenvalues
of this matrix back to the graph. For example, the existence of strongly regular graphs (i.e., a
regular graph where all pairs of adjacent vertices have a common neighbors and all pairs of non-
adjacent vertices have b common neighbors) is sharply constrained by the graph’s spectrum.
Famously, the Hoffman-Singleton theorem, whose proof integrally uses a delicate analysis of a
strongly regular graph’s spectral properties, says that the only graphs with girth 5 and diameter
2 are necessarily d-regular for d ∈ {2, 3, 7, 57}. A construction for the d = 57 case remains
open. Spectral graph theory has also found applications to real-world problems, for example,
in the identification of key users in a social network via the eigencentrality measure. This
idea is central to Google’s PageRank patent. With the recent surge of interest in data science,
network analysts are considering more complex sets of data. In many cases one may want to
capture salient properties of a network where connections can be better captured through group
connections. To do so, we extend these results to hypergraphs.

My dissertation research is in spectral hypergraph theory, where we relate the structure of a
hypergraph to its spectrum and vice versa. A hypergraph is a generalization of a graph wherein
edges potentially contain more than two vertices. Hypergraphs allow one to model complex
systems with greater fidelity: committees of representatives, similarities between friends, and
the evolution of a network over time. The cost of analyzing this richer structure is paid for in
theoretical and computational complexity. Where the adjacency characteristic polynomial of
a graph can be quickly computed as the determinant of a matrix, the adjacency characteristic
polynomial of a hypergraph is the resultant of a multilinear homogeneous system of equations [7]
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(which is known to be NP-hard to compute in general [11]). My research in spectral hypergraph
theory has focused on understanding the adjacency characteristic polynomial of a hypergraph.
To this end we have generalized the Harary-Sachs Theorem to hypergraphs, characterized the
spectrum of hypertrees, and provided a numerically stable algorithm for computing the char-
acteristic polynomial of a hypergraph given its set of eigenvalues and some leading coefficients.
Below I discuss the motivation, impact, and my future plans in spectral hypergraph theory.

1.1 A Generalization of the Harary-Sachs Theorem to Hypergraphs

An early, seminal result in spectral graph theory of Harary [12] (and later, more explicitly, Sachs
[18]) expressed the coefficients of a graph’s characteristic polynomial as a certain weighted sum
of the counts of various subgraphs of G.

Theorem 1. (Harary-Sachs Theorem) Let G be a labeled simple graph on n vertices. If Hi

denotes the collection of i-vertex graphs whose components are edges or cycles, and ci denotes
the codegree-i coefficient of the characteristic polynomial of G (i.e., the coefficient of λn−i), then

ci =
∑
H∈Hi

(−1)c(H)2z(H)[#H ⊆ G]

where c(H) is the number of components of H, z(H) is the number of components which are
cycles, and [#H ⊆ G] denotes the number of (labeled) subgraphs of G which are isomorphic to
H.

The Harary-Sachs Theorem relates the spectrum of a graph and its elementary subgraphs
(i.e., disjoint union of edges and cycles). We have generalized this theorem to hypergraphs and
provided an analogous description of elementary subgraphs which we refer to as Veblen graphs.
This result allows us to compute partial information about the characteristic polynomial of a
hypergraph when computing the whole polynomial is computationally costly. We are excited
to have generalized the Harary-Sachs Theorem to hypergraphs in the following way.

Theorem 2. Let H be a k-uniform hypergraph on n vertices. If Vi denotes the set of k-
uniform Veblen multi-hypergraphs (i.e., all vertices have degree divisible by k), and ci denotes
the codegree-i coefficient in the characteristic polynomial of H, then

ci =
∑

H∈Vi(H)

(−(k − 1)n)c(H)CH(#H ⊆ H)

where c(H) is the number of components of H, CH is a certain computable coefficient of H,
and (#H ⊆ H) is the number of particular maps of H to subgraphs of H.

Theorem 2 is an authentic generalization of the Harary-Sachs Theorem as Theorem 2 sim-
plifies to the Harary-Sachs Theorem when H is a graph (i.e., a 2-uniform hypergraph). We
point out that this result implies that the spectrum of a hypergraph is computable from the
counts of its Veblen subgraphs, just as the counts of its elementary subgraphs determine the
spectrum of a graph. While this situation for hypergraphs is predictably more complicated
than the graph case, it does directly connect the characteristic polynomial of a hypergraph to
its structure.

1.2 The Spectrum of Hypertrees

When studying the spectrum of a graph, a simple family to consider is the collection of trees.
As an example, one can apply the Harary-Sachs Theorem to show that the coefficients of the
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characteristic polynomial of a tree count the number of matchings of a particular size. This
yields that multiplicity of the zero eigenvalue of a tree is equal to the size of its largest matching.
Surprisingly, a similar bound on the multiplicity of the zero eigenvalue for an arbitrary graph
continues to elude description. We discuss our results concerning the spectrum of a hypertree
which are stronger than their tree analogue. We demonstrate the peculiarity of this dichotomy
by providing a spectral characterization of so-called “power trees”.

In [4] we show that the spectrum of a hypertree is the collection of all totally non-zero
eigenvalues of its subtrees. An eigenvalue is totally non-zero if the eigenvalue is non-zero and
corresponds to an eigenvector with all non-zero entries. In [20] the authors show that the totally
non-zero eigenvalues of a hypertree are roots of a certain matching polynomial. Using their
formula we characterize the set spectrum of a hypertree as the union of the totally
non-zero eigenvalues of its induced subtrees. In other words, we show that the totally
non-zero eigenvalues of a hypertree are necessarily eigenvalues of any hypertree which contains
it as a subgraph. Note that this is a variant of the Cauchy Interlacing Theorem which says
that the eigenvalues of a subgraph (formed by removing one vertex) interlace the eigenvalues
of the original graph. This is somewhat surprising in light of the fact that the same statement
is not true for ordinary graphs. We demonstrate this peculiarity by considering power trees. A
power tree is a k-uniform hypergraph created by adding k − 2 new vertices to each edge of a
tree. We have shown that a power tree is characterized by its eigenvalues being cyclotomic.

1.3 Stably Computing the Multiplicity of Known Roots

The characteristic polynomial of a k-uniform hypergraph with n vertices is the univariate (in λ)
polynomial obtained from the resultant of a family of n multilinear homogeneous polynomials of
degree k− 1, minus λ times a diagonal form of the same degree. By properties of the resultant,
the degree of the characteristic polynomial is n(k − 1)n−1. Computing the resultant is known
to be NP-hard over any field, in general ([11]). Thus, computing the characteristic polynomial
of a hypergraph using traditional tools from commutative algebra is intractable. However, we
can try to determine the characteristic polynomial of a hypergraph another way. Given the set
of roots of a polynomial without multiplicity and an appropriate number of leading coefficients
one can determine the multiplicity of its roots using the Faddeev-LeVerrier algorithm, a matrix
form of the Newton Identities. In [5] we provide a numerically stable algorithm for
computing the multiplicity of the roots of a polynomial where the roots (without
multiplicity) and some leading coefficients are known. The algorithm is stable in the
sense that if an eigenvalue is approximated by an ε-disk, where ε depends “reasonably” on the
parameters of the problem, the resulting disk approximating its multiplicity contains exactly
one integer. Our bound on ε is “reasonable” in that the number of bits required to approximate
each root is proportional to the number of distinct roots of p and the logarithms of the ratio
of the smallest difference of the roots with the largest difference of roots, the largest root, and
the largest coefficient. The crux of the algorithm is a method to invert a Vandermonde matrix
via a special factorization, when direct inversion would be numerically unstable.

We apply this algorithm to compute the adjacency characteristic polynomial of various
hypergraphs. By Theorem 2 we can determine the leading coefficients of the characteristic
polynomial, so it remains to determine the set of eigenvalues of the hypergraph. We can apply
the aforementioned results to determine the spectrum (without multiplicities) of a hypertree.
For a general hypergraph we can appeal to a method of Lu and Man to determine a subset of
the set spectrum [13]. As an example, we compute the characteristic polynomial of the Rowling
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hypergraph, as shown in Figure 1, to be

φ(R) =x133(x3 − 1)27(x15 − 13x12 + 65x9 − 147x6 + 157x3 − 64)12

· (x6 − x3 + 2)6(x6 − 17x3 + 64)3.

Figure 1: The Rowling hypergraph and its spectrum where a disk is centered at each root and
its area is proportional to the root’s multiplicity.

1.4 Future Work

Quasirandom Hypergraphs: I will apply Theorem 2 to prove a sufficient spectral condi-
tion for quasirandom hypergraphs. Intuitively, a hypergraph is quasirandom if it has the same
number of copies of a particular subgraph as one would expect in a random graph (where, in
its simplest form, each edge is taken with probability 1/2). This idea was first introduced for
graphs in [3] and was later extended to hypergraphs in [2]. Generally speaking, the idea is
that if one can show that a graph satisfies a particular condition then it is quasirandom. In
[2] the authors show that a hypergraph is quasirandom if it has approximately the expected
number of even partial octahedra (as described therein). Using Theorem 2 we aim to restate
this condition in terms of the coefficients and perhaps the spectrum itself by showing that the
linear combinations of subgraph counts appearing in the result are indeed “forcing sets” for
quasirandomness.

Multiplicity of the Zero Eigenvalue: One can apply the Harary-Sachs Theorem to show
that the multiplicity of the zero eigenvalue of a tree is equal to the size of its largest matching.
I plan to prove a similar statement for hypertrees using the fact that the eigenvalues of a hyper-
tree are the roots of a certain matching polynomial. I believe it is also possible to use Theorem
2 to show, by collecting summands corresponding to the same subgraph, that a hypergraph
has a coefficient threshold which provides an upper-bound on the multiplicity of the zero eigen-
value. By determining the coefficient threshold of hypertrees and other classes of hypergraphs
we could provide an upper-bound, or perhaps an explicit formula, for the multiplicity of the
zero eigenvalue.

Open Source Software: Computing the adjacency characteristic polynomial of a hypergraph
is NP-hard, in general. We have provided a numerically stable algorithm for computing the
characteristic polynomial of a hypergraph given its set of eigenvalues and an tractable number
of leading coefficients. I will continue working on each facet of this endeavor. This includes
finding faster ways to compute the leading coefficients and store this information in an open
access database, expanding on the Lu-Man method to provide an algorithm for determining
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eigenvalues of a larger class of hypergraphs, and utilizing high performance computing resources
to perform these computations. In particular, I aim to compute the characteristic polynomial
of the Fano Plane, especially since I know its first fifteen coefficients! I further plan on making
this algorithm open source as a service to the mathematical community.

2 k-planar Crossing Numbers

A graph is planar if it can be drawn in the plane without edge crossings. Moreover, a graph is
k-planar if its edges can be partitioned into k planes where the resulting subgraph in each plane
is planar. This idea was first studied for biplanar drawings (i.e., k = 2) but gained attention
when Tutte defined the thickness of a graph. The thickness of a graph G is the minimum
number of planar graphs that G can be decomposed into [19]. This notion is relevant for VLSI
chip design, where it corresponds to the number of layers required for realizing a network so
that there are no wire crossings within a layer [15]. It has been shown that determining if a
graph is biplanar is NP-complete in general [1, 14].

The traditional crossing number of a graph G, denoted by cr(G), is the minimum number
of edge crossings required to draw G in the plane. Owens defined the biplanar crossing number
cr2(G) of G as the minimum sum of the crossing numbers of two graphs, G0 and G1, whose
union is G [16]. The k-planar crossing number of G, denoted crk(G), is similarly defined as the
minimum sum of the crossing numbers of k graphs whose union is G. Trivially, crk(G) ≤ cr(G)
as we can partition all the edges of G into one plane. Below I discuss my work collaborative
work on improving known bounds for the k-planar crossing number.

2.1 The Biplanar Crossing Number of Hypercubes

Let Qn denote the n dimensional hypercube whose vertices are binary strings of length n and
where two vertices are incident if and only if they differ in precisely one bit. It was shown
in [8] that cr2(Q8) ≤ 256, we have improved this bound to cr2(Q8) ≤ 128 using a
symmetric decomposition and further conjecture this bound to be exact [6]. Our
approach highlights the relationship between symmetric drawings and the study of k-planar
crossing numbers and can be extended naturally to higher dimensional hypercubes (i.e., n > 8).
Our construction involves packing Q8 with a particular subgraph which we will refer to as a
widget. A drawing of a widget is given in Figure 2.1 where j and k are chosen from a particular
set of binary words of length four. We prove our upper-bound by showing that this packing
has the property that the edges of the widgets can be colored red and blue so that each vertex
is incident to exactly one blue widget and one red widget. The edge bi-partition is given by
partitioning the red edges into one plane and the blue edges into another. The desired bound
follows from the observation that the crossing number of a widget is at most 8 (as shown in
Figure 2.1) and that 16 widgets are needed to pack Q8.

2.2 Bounding crk(G) Given cr(G)

Czabarka, Sýkora, Székely, and Vrťo [9] proved that for every graph G we have

cr2(G) ≤ 3

8
cr(G).

Pach et al. [17] extended this investigation to the relationship between the k-planar crossing
number and the (ordinary) crossing number of a graph. For every integer k ≥ 1, they defined

αk = sup
crk(G)

cr(G)
,
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Figure 2: A widget where j and k are particular binary strings of length four.

where the supremum is taken over all nonplanar graphs G. They further proved that for every
positive integer k,

1

k2
≤ αk ≤

2

k2
− 1

k3
.

Note that for k = 2, the two upper-bounds are identical. We have shown that the lower-bound
of 1/k2 is asymptotically correct and have improved the upper-bound to the following.

Theorem 3. αk = 1
k2

(1 + o(1)) as k → ∞. Moreover, 1
k2

is exact for the case of bipartite
graphs.

2.3 Future Work

Self-Complementary Drawings: Our biplanar drawing of Q8 has the property that the
graphs in each plane are isomorphic. This is a rather special property and is termed self-
complementary in [8]. It is unclear if requiring a drawing to be self-complementary can create
more crossings. In particular, such symmetry would be expected when considering a highly
symmetric graph like the hypercube. I will continue investigating this question by determining
if our bound on cr2(Q8) is sharp.

Improved Bounds on αk: Theorem 3 and its proof surrender control over the o(1) term. We
have determined an improved upper-bound for the case of 3 ≤ k ≤ 10. It would be interesting
if a stronger statement could be made by restricting the supremum to be over a particular
family of graphs. This relates to the previous question if we consider only self-complementary
drawings.

3 Modeling Dark Net Markets

Digital black markets operating in the dark web have been explosive in their growth and pro-
liferation, with 16 concurrent major markets currently in operation with 171 major markets
opening and closing since law enforcement shuttered the original Silk Road cryptomarket in
2013 [22]. Combating this phenomenon is costly, with the UK pledging £9 million to fight dark
web markets in 2018 [21]. However, evidence suggests that these markets are adaptive to the
machinations of law enforcement. In particular, large-scale operations designed to disrupt mar-
ketplaces are ineffective despite observable marketplace closures [10]. As such, understanding
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the mechanisms by which the broader black market persists is crucial to the development of
effective countermeasures.

Dark net markets operate under an escrow service wherein a broker oversees all transactions.
We have proven that, unlike any known market or business (including legal markets which
operate under escrow), these cryptomarkets are designed to self-terminate and go dark. We
have proven that a dark net market will opt to self-terminate and have given
a formula to predict the time of closure given the broker’s transaction fee, the
expected growth of the market, and the risk-free rate. This work shows that every
dark net market is a scam in the sense that its profit maximization is derived from the broker
closing the market and stealing the funds at an optimal point in its operation. Our formulaic
approach gives expectations of the lifespan on these marketplaces which agree with empirical
observation. We additionally show that law enforcement activity serves to accelerate this closure
process by changing the level of risk in the environment.

3.1 Future Work

Identifying Users in a Dark Net Market: Digital black markets organize differently than
their legal counterparts. Roughly speaking, their social network forms a star where the central
user (the broker) is compensated for assuming the risk of other users. I am eager to apply
my research in spectral hypergraph theory to provide a richer model for digital black markets
which differentiates users based on behavior. It is my hope that this research would better
enable law enforcement to allocate their resources to accelerate market closure.

References

[1] L.W. Beineke, Biplanar graphs: a survey, Computers & Math. with Applications 34, 1–8,
(1997).

[2] F. R. K. Chung, Quasirandom hypergraphs revisited. Random Struct. Alg., 40: 39-48.
doi:10.1002/rsa.20388 (2012).

[3] F.R.K. Chung, R. L. Graham, R. M. Wilson, Combinatorica (1989) 9: 345.
https://doi.org/10.1007/BF02125347

[4] G. Clark, J. Cooper, On the Adjacency Spectra of Hypertrees. The Electronic Journal of
Combinatorics, 25(2).

[5] G. Clark, J. Cooper, Leading Coefficients and the Multiplicities of Known Roots,
https://arxiv.org/abs/1806.05222.

[6] G. Clark, G. Spencer. “New bounds on the biplanar crossing number of low-dimensional
hypercubes: How low can you go?” Bulletin of the Institute of Combinatorics and its
Applications (BICA) 83(2018), 52-60.

[7] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012)
3268-3292.

[8] É. Czabarka, O. Sýkora, L.A. Székely, I. Vrt́o, Biplanar crossing numbers: a survey of results
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[9] É. Czabarka, O. Sýkora, L. A. Székely, and I. Vrt’o, Biplanar crossing numbers II: comparing
crossing numbers and biplanar crossing numbers using the probabilistic method, Random
Structures and Algorithms 33, 480–496, (2008).

[10] D. Décary-Hétu, L. Giommoni, Do police crackdowns disrupt drug cryptomarkets? A longi-
tudinal analysis of the effects of Operation Onymous. Crime, Law and Social Change,67(1),
55-75 (2017).

[11] Grenet B , Koiran P, Portier N. The Multivariate Resultant Is NP-hard in Any Character-
istic. Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
6281 (2010) 477-488.

[12] F. Harary, The determinant of the adjacency matrix of a graph, SIAM Rev., 4 (1962),
202-210.

[13] L. Lu, S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl.
509 (2016), 206-227.

[14] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge
Philos. Soc. 93, 9–23, (1983).

[15] P. Mutzel, T. Odenthal, and M. Scharbrodt, The thickness of graphs: a survey, Graphs
Combin. 14, 59–73, (1998).

[16] A. Owens, On the biplanar crossing number, IEEE Trans. Circuit Theory 18 (1971) 277-
280.
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