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Research Statement

My research is in pure and applied discrete mathematics; specifically, spectral
hypergraph theory, computational social science, and graph statistics. In my work I
develop hypergraph models and apply them to empirical phenomena. As part of my research I
collaborate with corporate partners (e.g., Google, Meta, Twitter, et al.) to solve future-facing
industry problems in a measurable, explainable, and verifiable way. These projects have lead
to actionable insights for thought leaders, peer-reviewed research papers, and policy shaping
reports. In this statement I will describe my work in discrete mathematics and then discuss
how it relates to my industry focused research in network analysis.

Figure 1: Hypergraph models of cross platform communication about Covid-19 topics.

A central theme of my research is exploring the characteristic polynomial of a hypergraph.
A hypergraph is a generalization of the traditional graph (i.e., network) where edges are allowed
to connect more than two vertices. Examples of hypergraphs used to model social networks
addressing Covid-19 topics are given in Figure 1 (higher dimensional edges are monochromatic).
This work is connected to numerous fields of mathematics because the aforementioned polyno-
mial is the resultant of a system of multilinear homogeneous equations. The resultant, which
is a generalization of the determinant, is central to algebraic geometry, commutative algebra,
and numerical multilinear algebra among other areas. In particular, my dissertation gives a
generalization of the Harary-Sachs Theorem by providing a combinatorial description of the
coefficients of characteristic polynomial of a hypergraph [1]. This result is valuable because we
can compute the leading coefficients of this particular polynomial without needing to compute
all the coefficients, which is NP-hard to compute in general. Furthermore, I have provided a
numerically stable algorithm which can compute the characteristic polynomial of a hypergraph
given its set spectrum and leading coefficients. This allows for the computation of the charac-
teristic polynomial of a hypergraph when traditional tools from commutative algebra (i.e., the
resultant) have been insufficient. I have further applied this work to industry sourced problems
by examining how the principal eigenvector of a hypergraph and its shadows can vary.
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1 Spectral Hypergraph Theory

Given a graph G we would like to understand its structure. One can define a certain matrix
of a graph (e.g., adjacency, incidence, Laplacian, etc.) and connect the multiset of eigenvalues
of this matrix back to the graph. For example, the existence of strongly regular graphs (i.e., a
regular graph where all pairs of adjacent vertices have a common neighbors and all pairs of non-
adjacent vertices have b common neighbors) is sharply constrained by the graph’s spectrum.
Famously, the Hoffman-Singleton theorem, whose proof integrally uses a delicate analysis of
a strongly regular graph’s spectral properties, says that the only graphs with girth 5 and
diameter 2 are necessarily d-regular for d ∈ {2, 3, 7, 57}. A construction for the d = 57 case
remains open. Spectral graph theory has also found applications to real-world problems, for
example, in the identification of key users in a social network via the eigencentrality measure.
This idea is central to Google’s PageRank patent. With the recent surge of interest in data
science, network analysts are considering more complex sets of data. In many cases one may
want to capture salient properties of a network where connections can be better expressed
through group connections. To do so, we extend these results to hypergraphs.

My research focuses on spectral hypergraph theory, where we relate the structure of a
hypergraph to its spectrum and vice versa. A hypergraph is a generalization of a graph wherein
edges potentially contain more than two vertices. Hypergraphs allow one to model complex
systems with greater fidelity: committees of representatives, similarities between friends, and
the evolution of a network over time. The cost of analyzing this richer structure is paid for in
theoretical and computational complexity. Where the adjacency characteristic polynomial of
a graph can be quickly computed as the determinant of a matrix, the adjacency characteristic
polynomial of a hypergraph is the resultant of a multilinear homogeneous system of equations [2]
(which is known to be NP-hard to compute in general [3]). As such, my primary line of research
seeks to understand the adjacency characteristic polynomial of a hypergraph. To this end we
have generalized the Harary-Sachs Theorem to hypergraphs [1], characterized the spectrum of
hypertrees [4], and provided a numerically stable algorithm for computing the characteristic
polynomial of a hypergraph given its set of eigenvalues and some leading coefficients [5]. Below
I discuss the motivation, impact, and continuing research agenda in spectral hypergraph theory.

1.1 The Generalized Harary-Sachs Theorem for Hypergraphs

An early, seminal result in spectral graph theory of Harary [6] (and later, more explicitly, Sachs
[7]) expressed the coefficients of a graph’s characteristic polynomial as a certain weighted sum
of the counts of various subgraphs of G.

Theorem 1. (Harary-Sachs Theorem) Let G be a labeled simple graph on n vertices. If Hi

denotes the collection of i-vertex graphs whose components are edges or cycles, and ci denotes
the codegree-i coefficient of the characteristic polynomial of G (i.e., the coefficient of λn−i), then

ci =
∑
H∈Hi

(−1)c(H)2z(H)[#H ⊆ G]

where c(H) is the number of components of H, z(H) is the number of components which are
cycles, and [#H ⊆ G] denotes the number of (labeled) subgraphs of G which are isomorphic to
H.

The Harary-Sachs Theorem relates the spectrum of a graph and its elementary subgraphs
(i.e., disjoint union of edges and cycles). We have generalized this theorem to hypergraphs and
provided an analogous description of elementary subgraphs which we refer to as Veblen graphs.
This result allows us to compute partial information about the characteristic polynomial of a
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hypergraph when computing the whole polynomial is computationally costly. We are excited
to have generalized the Harary-Sachs Theorem to hypergraphs in the following way.

Theorem 2. ([1]) Let H be a k-uniform hypergraph on n vertices. If Vi denotes the set of
k-uniform Veblen multi-hypergraphs (i.e., all vertices have degree divisible by k), and ci denotes
the codegree-i coefficient in the characteristic polynomial of H, then

ci =
∑

H∈Vi(H)

(−(k − 1)n)c(H)CH(#H ⊆ H)

where c(H) is the number of components of H, CH is a certain computable coefficient of H,
and (#H ⊆ H) is the number of particular maps of H to subgraphs of H.

Theorem 2 is a faithful generalization of the Harary-Sachs Theorem as it simplifies to the
Harary-Sachs Theorem when H is a graph (i.e., a 2-uniform hypergraph) [8]. We point out
that this result implies that the spectrum of a hypergraph is computable from the counts of its
Veblen subgraphs, just as the counts of its elementary subgraphs determine the spectrum of a
graph. While this situation for hypergraphs is predictably more complicated than the graph
case, it does directly connect the characteristic polynomial of a hypergraph to its structure.

1.2 The Spectrum of Hypertrees

When studying the spectrum of a graph, a simple family to consider is the collection of trees.
As an example, one can apply the Harary-Sachs Theorem to show that the coefficients of the
characteristic polynomial of a tree count the number of matchings of a particular size. This
yields that multiplicity of the zero eigenvalue of a tree is equal to the size of its largest matching.
Surprisingly, a similar bound on the multiplicity of the zero eigenvalue for an arbitrary graph
continues to elude description. We discuss our results concerning the spectrum of a hypertree
which are stronger than their tree analogue. We demonstrate the peculiarity of this dichotomy
by providing a spectral characterization of so-called “power trees”.

In [4] we show that the spectrum of a hypertree is the collection of all totally non-zero
eigenvalues of its subtrees. An eigenvalue is totally non-zero if the eigenvalue is non-zero and
corresponds to an eigenvector with all non-zero entries. In [9] the authors show that the totally
non-zero eigenvalues of a hypertree are roots of a certain matching polynomial. Using their
formula we characterize the set spectrum of a hypertree as the union of the totally
non-zero eigenvalues of its induced subtrees. In other words, we show that the totally
non-zero eigenvalues of a hypertree are necessarily eigenvalues of any hypertree which contains
it as a subgraph. Note that this is a variant of the Cauchy Interlacing Theorem which says
that the eigenvalues of a subgraph (formed by removing one vertex) interlace the eigenvalues
of the original graph. This is somewhat surprising in light of the fact that the same statement
is not true for ordinary graphs. We demonstrate this peculiarity by considering power trees. A
power tree is a k-uniform hypergraph created by adding k − 2 new vertices to each edge of a
tree. We have shown that a power tree is characterized by its eigenvalues being cyclotomic.

1.3 Stably Computing the Multiplicity of Known Roots

The characteristic polynomial of a k-uniform hypergraph with n vertices is the univariate (in λ)
polynomial obtained from the resultant of a family of n multilinear homogeneous polynomials of
degree k− 1, minus λ times a diagonal form of the same degree. By properties of the resultant,
the degree of the characteristic polynomial is n(k − 1)n−1. Computing the resultant is known
to be NP-hard over any field, in general [3]. Thus, computing the characteristic polynomial of
a hypergraph using traditional tools from commutative algebra is intractable. However, we can
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try to determine the characteristic polynomial of a hypergraph another way. Given the set of
roots of a polynomial without multiplicity and an appropriate number of leading coefficients
one can determine the multiplicity of its roots using the Faddeev-LeVerrier algorithm, a matrix
form of the Newton Identities. In [5] we provide a numerically stable algorithm for
computing the multiplicity of the roots of a polynomial where the roots (without
multiplicity) and some leading coefficients are known. The algorithm is stable in the
sense that if an eigenvalue is approximated by an ε-disk, where ε depends “reasonably” on the
parameters of the problem, the resulting disk approximating its multiplicity contains exactly
one integer. Our bound on ε is “reasonable” in that the number of bits required to approximate
each root is proportional to the number of distinct roots of p and the logarithms of the ratio
of the smallest difference of the roots with the largest difference of roots, the largest root, and
the largest coefficient. The crux of the algorithm is a method to invert a Vandermonde matrix
via a special factorization, when direct inversion would be numerically unstable.

We apply this algorithm to compute the adjacency characteristic polynomial of various
hypergraphs. By Theorem 2 we can determine the leading coefficients of the characteristic
polynomial, so it remains to determine the set of eigenvalues of the hypergraph. We can apply
the aforementioned results to determine the spectrum (without multiplicities) of a hypertree.
For a general hypergraph we can appeal to a method of Lu and Man to determine a subset of
the set spectrum [10]. As an example, we compute the characteristic polynomial of the Rowling
hypergraph, as shown in Figure 2, to be

φ(R) =x133(x3 − 1)27(x15 − 13x12 + 65x9 − 147x6 + 157x3 − 64)12

· (x6 − x3 + 2)6(x6 − 17x3 + 64)3.

Figure 2: The Rowling hypergraph and its spectrum where a disk is centered at each root and
its area is proportional to the root’s multiplicity.

1.4 Future Work

Quasirandom Hypergraphs: I will apply Theorem 2 to prove a sufficient spectral condi-
tion for quasirandom hypergraphs. Intuitively, a hypergraph is quasirandom if it has the same
number of copies of a particular subgraph as one would expect in a random graph (where, in
its simplest form, each edge is taken with probability 1/2). This idea was first introduced for
graphs in [11] and was later extended to hypergraphs in [12]. Generally speaking, the idea is
that if one can show that a graph satisfies a particular condition then it is quasirandom. In
[12] the authors show that a hypergraph is quasirandom if it has approximately the expected
number of even partial octahedra (as described therein). Using Theorem 2 we aim to restate
this condition in terms of the coefficients and perhaps the spectrum itself by showing that the
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linear combinations of subgraph counts appearing in the result are indeed “forcing sets” for
quasirandomness.

Multiplicity of the Zero Eigenvalue: One can apply the Harary-Sachs Theorem to show
that the multiplicity of the zero eigenvalue of a tree is equal to the size of its largest matching.
I plan to prove a similar statement for hypertrees using the fact that the eigenvalues of a hyper-
tree are the roots of a certain matching polynomial. I believe it is also possible to use Theorem
2 to show, by collecting summands corresponding to the same subgraph, that a hypergraph
has a coefficient threshold which provides an upper-bound on the multiplicity of the zero eigen-
value. By determining the coefficient threshold of hypertrees and other classes of hypergraphs
we could provide an upper-bound, or perhaps an explicit formula, for the multiplicity of the
zero eigenvalue.

Open Source Software: Computing the adjacency characteristic polynomial of a hypergraph
is NP-hard, in general. We have provided a numerically stable algorithm for computing the
characteristic polynomial of a hypergraph given its set of eigenvalues and an tractable number
of leading coefficients. I will continue working on each facet of this endeavor. This includes
finding faster ways to compute the leading coefficients and store this information in an open
access database, expanding on the Lu-Man method to provide an algorithm for determining
eigenvalues of a larger class of hypergraphs, and utilizing high performance computing resources
to perform these computations. In particular, I aim to compute the characteristic polynomial
of the Fano Plane, especially since I know its first fifteen coefficients! I further plan on making
this algorithm open source as a service to the mathematical community.

2 Hypergraph Models of Empirical Phenomena

The analysis of relational data and their corresponding networks has become an integral part
to the study of complex systems [13, 14, 15, 16]. Graph theory (and more generally, network
analysis) is commonly employed in these situations because of its suite of statistical techniques.
A prevailing example is network centrality. A typical application of network centrality involves
locating influential users in a network. For example, quantifying the effects of collaboration
networks, the advantages of network position, and the resilience of one’s reputation. Centrality
measures are also a common tool in scientific fields such as machine learning, biology, and
engineering.

There are several centrality measures to consider but the most frequently used are degree,
betweeness, closeness, and eigenvector centrality. While the aforementioned notions of central-
ity are related, they can be different in practice. Notably, the Krakhardt kite (see Figure 3) is
an example of a network where different vertices are identified as being the most central under
degree (vertex-3), betweeness (vertex-7), and closeness centrality (vertex-5 and vertex-6). The
Krackhardt kite demonstrates that different definitions of centrality can lead to the identifi-
cation of different nodes as being the most central. As multi-dimensional data becomes
increasingly ubiquitous in data science, it is natural to wonder if a centrality mea-
sure (like eigenvector centrality) can similarly identify different nodes as being the
most central depending on the dimension of the data. Remarkably, the answer is
in the affirmative. We present an example of this phenomenon and discuss its implications
below.
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Figure 3: The Krackhardt kite.

2.1 The Effect of Network Dimensionality on Eigenvector Centrality

Historically, multi-dimensional data has been projected down to lower dimensions to simplify
analysis. In particular, data which could be represented as a hypergraph is projected down
to a traditional, two-dimensional graph. This operation, referred to as the shadow (aka clique
expansion in some literature), replaces each edge with a clique of the same size. For example,
the edge {1, 2, 3} would become {{1, 2}, {1, 3}, {2, 3}} under the shadow operation. In Figure
4 we present an example of a bow tie hypergraph, where each edge is incident to three nodes,
and its corresponding shadow graph. It is natural to ask to what extent can the principal
eigenvector of a hypergraph and its shadow vary? One approach is to consider their spectral
ranking, that is, the ordering of the vertices from most central to least central.

We have shown that the bow tie hypergraph B1, given in Figure 5, and its shadow disagree
between who is more central: vertex-1 or vertex 4? In the 3-dimensional ‘hypergraph case’,
vertex-1 is more central than vertex-4. However, in the 2-dimensional ‘shadow’ case, the oppo-
site is true. In practice, this means that the ‘most influential users of a social network’ can vary
depending on the dimension of the model. What’s more, we can extend this example
to a hypergraph where the most central node, under the eigenvector centrality
measure, changes under the shadow operation (see Figure 5). As a result, networks
which are created from projecting higher dimensional data down to 2-dimensions can lead to
different identifications of the most central node, even when no information is lost.

Figure 4: A 3-uniform bow tie hypergraph B1 (left) and its shadow ∂B1 (right).
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Figure 5: The 8-pleated bow tie, B8. The vertices {r1, r2} are the most central vertices (under
the principal eigenvector centrality) but m is the most central in the shadow.

2.2 The Correlation of Shadow Eigenvectors

In the previous section we discussed how the spectral ranking of a hypergraph and its shadow
can vary. One may also consider the extent to which these rankings may differ globally (as
opposed to local inversions). To answer this question we consider how the eigenvectors of a
hypergraph and its shadow can correlate. It is commonly accepted that the principal eigenvector
and degree vector of a graph have a high Pearson correlation. In this case, we are interested
in their Spearman correlation (i.e., the Pearson correlation of the rank function). Amazingly,
the Spearman correlation of the principal eigenvector of B8, given in Figure 5, and its shadow
is 0.07110. Moreover, this is exact. A summary of the correlation between various vectors
associated to B1 and B8 are presented in Table 1.

Table 1: The Pearson rp and Spearman rs correlation coefficients of y, the principal eigenvector
of a hypergraph H; x, the principal eigenvector of its shadow ∂2(H); and d, the normalized
degree vector of H.

Hypergraph rp(y, x) rp(y, d) rp(x, d) rs(y, x) rs(y, d) rs(x, d)
B8 0.99455 0.99601 0.99985 0.07110 0.72623 0.73439
B1 0.99549 0.98784 0.99230 0.88889 0.94281 0.94281

2.3 Classifying Expert Opinion from Text Data

The Here to be Heard campaign is the result of a global survey of over 10,000
woman from 88 countries with the aim of helping women achieve their full poten-
tial. The study was lead by Mars, Incorporated with partnership from the Oxford Future of
Marketing Initiative. I discuss the details of the collaboration and my role in it in my Diversity
Statement. Participants were asked one question: what needs to change so that more women
can reach their full potential?. The results from this report are being used to reshape Mars to
empower women within the company and their global community. This survey speaks to the
larger problem of representation within decision making groups at various levels of organisations
around the world. In particular, can those without a particular lived experience adequately
make decisions with only outside information? We hypothesize that this is not the case.

To test our hypothesis we re-frame the question as a classification problem. We define
an expert to be someone with a related lived experience. For example, an expert on the
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aforementioned question is anyone who has identified as a woman at some point in their life.
The question then is whether we can classify an expert by the topics used in their response
alone.

To address this problem we utilized natural language processing and latent Dirichlet al-
location topic modeling to identify the key topics for experts globally. Through this process
we identified 28 primary topics which were mentioned by experts in their responses. We then
worked with qualitative analysts to group these topics into eight major themes. With these
topics in hand, we explored how they were presented across different demographics.

A surprising result from this analysis was the difference between the frequency of topic
mentions between experts and nonexperts. The RMSE of responses varied by 0.0643, in other
words, expert and non-expert respondents mentioned the same topics with roughly the same
frequency on a global scale. This is evidence for a behavioural phenomenon known as parrot-
ing. Parroting is a process by which non-experts repeat expert opinion without the depth of
understanding [17, 18]. To better gauge the depth of knowledge, we shifted our attention to
how respondents formed narratives from these topics. To this end I constructed a hypergraph
association model to explore the complexity of responses by demographic as shown in Figure 6.
Once again we were surprised that both expert and non-expert respondents contained roughly
the same number of topics in their responses on average. However, an interesting network
structure emerged: the density of expert and non-expert association networks were drastically
different. To be precise, expert respondents formed a nearly complete network (all pairs of
associations were accounted for) while non-expert respondents only accounted for 70% of all
possible associations. In summary, non-experts were able to mimic the responses of experts but
were not able to form the same associations between topics.

Figure 6: Hypergraph model of expert (left) and non-expert (right) respondents. Each
monochromatic clique represents the topics used in a given response.

2.4 Future Work

Testing for spectral rank inversions: As demonstrated above, the spectral ranking of a hy-
pergraph and its shadow can differ. We say that such a hypergraph is umbral. There are various
constructions of umbral hypergraphs; however, there is no test for whether a given hypergraph
is umbral or not. An initial family to consider is that of k-cylinders (i.e., k-colorable k-uniform
hypergraphs [2]) because of their prevalence in modeling heterogeneous data and structural
simplicity. I will provide a characterisation of hypergraphs which are umbral and further create
a test for determining if a k-cylinder is umbral which is feasible (i.e., computationally O(nk)).
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Co-opting social movements: In the digital age, grassroot social movements emerge to re-
define cultural norms. This process involves the co-opting of various groups and ideologies to
gain traction in the mainstream media. One vehicle for this is hashtags (#). Hashtags create
awareness and discussion, spread ideas, better affiliate individuals with a community, integrate
resources from the Internet, facilitate policy formation, social change, and democracy [19, 20].
As a social movement attracts more attention it welcomes further co-opting which can uninten-
tionally shift its focus. We will study social phenomena related to this concept by examining
emergent topics in the life cycle of a social movement.

Quantifying corporate authenticity: We have considered the classification of text data as
either expert or non-expert opinion. I am interested in studying how generalizable these results
are to other contexts. In particular, if we can classify client facing corporate communications
arising reflect expert or non-expert opinion. For example, can we determine if a firm’s purpose
statement is authentic (c.f., green washing)? I will create an open source software package for
researchers to apply this methodology to enable social science researchers.

3 Irregularity Measures and Their Applications

There are several measures of graph irregularity which are used to determine how ‘close’ a given
graph is to being regular. One such measure, the principal ratio, is the ratio of the greatest and
least entry of the principal eigenvector of a graph G. We reserve (λ, x) to denote the principal
eigenpair of the adjacency matrix of G. The principal ratio, then, is denoted γ(G) = xmax/xmin.
A limitation of this statistic is its sensitivity to the position (and to an extent the degree) of
individual vertices in the graph. For example, its applicability to empirical networks where the
principal eigenvector is highly dispersed (e.g., scale-free networks [21, 22, 23]). This motivates
the study of the underlying vector’s dispersion.

Given a vector x ∈ Rn
+ let µ denote its mean and σ its standard deviation. The coefficient

of variation of x is the ratio σ/µ. For convenience we will consider the square of the coefficient
of variation which we denote

cx :=

(
σ

µ

)2

.

The coefficient of variation and its square appear frequently across multiple disciplines:
economic inequality [24], reliability of measures [25], and efficiency of experimental designs
[26]. Interestingly, the inverse of the coefficient of variation, µ/σ, is the signal-to-noise ratio
(SNR). The SNR is used informally to measure the ratio of useful to irrelevant information in
a conversation [27]. It has further found use in information theory [28], optics [29], internet
topology [30], medical imaging [31], and nuclear engineering [32].

3.1 Distribution of Graphical Vectors

Studying the distribution of vectors associated to graphs is not new. Notably the variance of
the degree vector was an early irregularity measure [33]. As such, we consider the coefficient of
variation of the degree vector in addition to the principal eigenvector. We reserve d to denote
the degree vector of a graph G. We denote the square of the coefficient of variation of the
principal eigenvector as ce and the degree vector as cd. Studying the distribution of these two
vectors in tandem will further aid in motivating their use in practice.

We show that cd and ce are both bounded above by the same function of principal ratio
(namely, γ2 − 1). We further consider various graph families and compute the limit of the
aforementioned statistics of said graphs. We present graph families for which the limit

9



of their coefficient of variation is 0, non-zero, or diverges to infinity. We summarize
our results in Table 2 and note that all six cases for the limit of the principal ratio
and the coefficient of variation (for the principal eigenvector or degree vector,
respectively) are achieved.

Table 2: The limit of γ2 − 1, ce, and cd for various graph families including the complete
graph with an edge removed; a particular complete triparite graph, a complete split graph (i.e.,
S(n,m) = Kn+m − Km); the complete graph with a pendant edge, a kite whose head is an
r-regular graph; the star; and the Cartesian product of a graph with itself.

Gn lim γ2 − 1 lim ce lim cd

Kn −K2 0 0 0
K1,n,n 3 0 0

S(n, kn)
(√

4k+1+1
2

)2
− 1

k
(√

4k+1−1
k

−2
)2

(
√
4k+1+1)2

k3

(2k+1)2

P2Kn−1 ∞ 0 0

PnG
r
n ∞ −

(
r−2
r+2

)2
K1,n ∞ 1 ∞
G�n ∞ ∞ 0

3.2 Divergence of Local and Global Clustering Coefficient

Consider the complete split graph S(n,m) = Kn,m ∪ Kn. We have shown that the principal
ratio, eigenvector dispersion, and degree dispersion of S(n, nk) all converge to a positive number
for fixed k. In the case when k = 1, we showed that the principal ratio of S(n, n) converges to
ϕ, the golden ratio. We further show that this family has the rare property that the average
clustering coefficient and transitivity diverge for S(n, kn) as we take n and k to be arbitrarily
large. To the best of our knowledge this is the third such graph family to have this property [34]
(c.f., the friendship (aka windmill, n-fan) graph [21] and the agave graph [35]). Notably, this
property was observed in brokerage networks formed by illicit marketplaces which are closely
approximated by complete split graphs [36, 37, 38].

The Watts-Strogatz clustering coefficient (see [13]) of a vertex i is a measure of the transi-
tivity of local connections in a network

Ci =
2ti

di(di − 1)

where ti is the number of triangles which contain i. The average Watts-Strogatz clustering
coefficient of a graph G is defined

C =
1

n

n∑
i=1

Ci.

Finally the transitivity of a graph (see [39, 40]) is defined to be

T =
3(# of triangles)∑n

i=1

(
di
2

) .

Using this language we show

Theorem 3.
lim
k→∞

lim
n→∞

C(S(n, kn)) = 1 and lim
k→∞

lim
n→∞

T (S(n, kn)) = 0.
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3.3 Future Work

Extremal Graph: The kite graph (aka lollipop graph) is the extremal graph for the maxi-
mum hitting time of a graph as well as the maximum principal ratio for graphs on n vertices
[41, 42, 43]. In each case, the head size (i.e., s in PmKs) is a function of n. The maximum hitting
time occurs when s ≈ (2n+1)/3 while maximising the principal ratio requires s ≈ n/ log n. We
conjecture that a kite graph maximises ce when the head size is precisely s = 4. This conjecture
was previously observed in the context in molecular graphs [44]. I will prove this conjecture in
the positive which will resolve open problems in various fields.

Eigenvector with Small Variance but Large Degree Variance:. In Table 2 we provide
the limit of the principal ratio, the coefficient of variation of the principal eigenvector, and
the coefficient of variation of the degree vector. Our initial results compared the limit of the
principal ratio with that of the coefficients of variation. Note an example of a graph family Gn

where lim ce(Gn) = 0 but lim cd(Gn) = ∞ remains open. I conjecture and will prove that no
such family exists.

Coefficient of Variation in Practice: As previously discussed the coefficient of variation
arises in numerous fields and contexts. We have constructed various graph families for which
the limit ce and cd can converge or diverge. I will review the literature concerning applications
of the coefficient of variation and examine if the conclusions apply in the case of the principal
eigenvector, degree vector, or both.
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[44] Gerta Rücker, Christoph Rücker, and Ivan Gutman. On kites, comets, and stars. sums
of eigenvector coefficients in (molecular) graphs. Zeitschrift für Naturforschung A, 57(3-
4):143–153, 2002.

13


